// ZipCrypto.cs // ------------------------------------------------------------------ // // Copyright (c) 2008, 2009, 2011 Dino Chiesa // All rights reserved. // // This code module is part of DotNetZip, a zipfile class library. // // ------------------------------------------------------------------ // // This code is licensed under the Microsoft Public License. // See the file License.txt for the license details. // More info on: http://dotnetzip.codeplex.com // // ------------------------------------------------------------------ // // last saved (in emacs): // Time-stamp: <2011-July-28 06:30:59> // // ------------------------------------------------------------------ // // This module provides the implementation for "traditional" Zip encryption. // // Created Tue Apr 15 17:39:56 2008 // // ------------------------------------------------------------------ using System; namespace OfficeOpenXml.Packaging.Ionic.Zip { /// /// This class implements the "traditional" or "classic" PKZip encryption, /// which today is considered to be weak. On the other hand it is /// ubiquitous. This class is intended for use only by the DotNetZip /// library. /// /// /// /// Most uses of the DotNetZip library will not involve direct calls into /// the ZipCrypto class. Instead, the ZipCrypto class is instantiated and /// used by the ZipEntry() class when encryption or decryption on an entry /// is employed. If for some reason you really wanted to use a weak /// encryption algorithm in some other application, you might use this /// library. But you would be much better off using one of the built-in /// strong encryption libraries in the .NET Framework, like the AES /// algorithm or SHA. /// internal class ZipCrypto { /// /// The default constructor for ZipCrypto. /// /// /// /// This class is intended for internal use by the library only. It's /// probably not useful to you. Seriously. Stop reading this /// documentation. It's a waste of your time. Go do something else. /// Check the football scores. Go get an ice cream with a friend. /// Seriously. /// /// private ZipCrypto() { } public static ZipCrypto ForWrite(string password) { ZipCrypto z = new ZipCrypto(); if (password == null) throw new BadPasswordException("This entry requires a password."); z.InitCipher(password); return z; } public static ZipCrypto ForRead(string password, ZipEntry e) { System.IO.Stream s = e._archiveStream; e._WeakEncryptionHeader = new byte[12]; byte[] eh = e._WeakEncryptionHeader; ZipCrypto z = new ZipCrypto(); if (password == null) throw new BadPasswordException("This entry requires a password."); z.InitCipher(password); ZipEntry.ReadWeakEncryptionHeader(s, eh); // Decrypt the header. This has a side effect of "further initializing the // encryption keys" in the traditional zip encryption. byte[] DecryptedHeader = z.DecryptMessage(eh, eh.Length); // CRC check // According to the pkzip spec, the final byte in the decrypted header // is the highest-order byte in the CRC. We check it here. if (DecryptedHeader[11] != (byte)((e._Crc32 >> 24) & 0xff)) { // In the case that bit 3 of the general purpose bit flag is set to // indicate the presence of an 'Extended File Header' or a 'data // descriptor' (signature 0x08074b50), the last byte of the decrypted // header is sometimes compared with the high-order byte of the // lastmodified time, rather than the high-order byte of the CRC, to // verify the password. // // This is not documented in the PKWare Appnote.txt. It was // discovered this by analysis of the Crypt.c source file in the // InfoZip library http://www.info-zip.org/pub/infozip/ // // The reason for this is that the CRC for a file cannot be known // until the entire contents of the file have been streamed. This // means a tool would have to read the file content TWICE in its // entirety in order to perform PKZIP encryption - once to compute // the CRC, and again to actually encrypt. // // This is so important for performance that using the timeblob as // the verification should be the standard practice for DotNetZip // when using PKZIP encryption. This implies that bit 3 must be // set. The downside is that some tools still cannot cope with ZIP // files that use bit 3. Therefore, DotNetZip DOES NOT force bit 3 // when PKZIP encryption is in use, and instead, reads the stream // twice. // if ((e._BitField & 0x0008) != 0x0008) { throw new BadPasswordException("The password did not match."); } else if (DecryptedHeader[11] != (byte)((e._TimeBlob >> 8) & 0xff)) { throw new BadPasswordException("The password did not match."); } // We have a good password. } else { // A-OK } return z; } /// /// From AppNote.txt: /// unsigned char decrypt_byte() /// local unsigned short temp /// temp :=- Key(2) | 2 /// decrypt_byte := (temp * (temp ^ 1)) bitshift-right 8 /// end decrypt_byte /// private byte MagicByte { get { UInt16 t = (UInt16)((UInt16)(_Keys[2] & 0xFFFF) | 2); return (byte)((t * (t ^ 1)) >> 8); } } // Decrypting: // From AppNote.txt: // loop for i from 0 to 11 // C := buffer(i) ^ decrypt_byte() // update_keys(C) // buffer(i) := C // end loop /// /// Call this method on a cipher text to render the plaintext. You must /// first initialize the cipher with a call to InitCipher. /// /// /// /// /// var cipher = new ZipCrypto(); /// cipher.InitCipher(Password); /// // Decrypt the header. This has a side effect of "further initializing the /// // encryption keys" in the traditional zip encryption. /// byte[] DecryptedMessage = cipher.DecryptMessage(EncryptedMessage); /// /// /// /// The encrypted buffer. /// /// The number of bytes to encrypt. /// Should be less than or equal to CipherText.Length. /// /// /// The plaintext. public byte[] DecryptMessage(byte[] cipherText, int length) { if (cipherText == null) throw new ArgumentNullException("cipherText"); if (length > cipherText.Length) throw new ArgumentOutOfRangeException("length", "Bad length during Decryption: the length parameter must be smaller than or equal to the size of the destination array."); byte[] plainText = new byte[length]; for (int i = 0; i < length; i++) { byte C = (byte)(cipherText[i] ^ MagicByte); UpdateKeys(C); plainText[i] = C; } return plainText; } /// /// This is the converse of DecryptMessage. It encrypts the plaintext /// and produces a ciphertext. /// /// /// The plain text buffer. /// /// /// The number of bytes to encrypt. /// Should be less than or equal to plainText.Length. /// /// /// The ciphertext. public byte[] EncryptMessage(byte[] plainText, int length) { if (plainText == null) throw new ArgumentNullException("plaintext"); if (length > plainText.Length) throw new ArgumentOutOfRangeException("length", "Bad length during Encryption: The length parameter must be smaller than or equal to the size of the destination array."); byte[] cipherText = new byte[length]; for (int i = 0; i < length; i++) { byte C = plainText[i]; cipherText[i] = (byte)(plainText[i] ^ MagicByte); UpdateKeys(C); } return cipherText; } /// /// This initializes the cipher with the given password. /// See AppNote.txt for details. /// /// /// /// The passphrase for encrypting or decrypting with this cipher. /// /// /// /// /// Step 1 - Initializing the encryption keys /// ----------------------------------------- /// Start with these keys: /// Key(0) := 305419896 (0x12345678) /// Key(1) := 591751049 (0x23456789) /// Key(2) := 878082192 (0x34567890) /// /// Then, initialize the keys with a password: /// /// loop for i from 0 to length(password)-1 /// update_keys(password(i)) /// end loop /// /// Where update_keys() is defined as: /// /// update_keys(char): /// Key(0) := crc32(key(0),char) /// Key(1) := Key(1) + (Key(0) bitwiseAND 000000ffH) /// Key(1) := Key(1) * 134775813 + 1 /// Key(2) := crc32(key(2),key(1) rightshift 24) /// end update_keys /// /// Where crc32(old_crc,char) is a routine that given a CRC value and a /// character, returns an updated CRC value after applying the CRC-32 /// algorithm described elsewhere in this document. /// /// /// /// /// After the keys are initialized, then you can use the cipher to /// encrypt the plaintext. /// /// /// /// Essentially we encrypt the password with the keys, then discard the /// ciphertext for the password. This initializes the keys for later use. /// /// /// public void InitCipher(string passphrase) { byte[] p = SharedUtilities.StringToByteArray(passphrase); for (int i = 0; i < passphrase.Length; i++) UpdateKeys(p[i]); } private void UpdateKeys(byte byteValue) { _Keys[0] = (UInt32)crc32.ComputeCrc32((int)_Keys[0], byteValue); _Keys[1] = _Keys[1] + (byte)_Keys[0]; _Keys[1] = _Keys[1] * 0x08088405 + 1; _Keys[2] = (UInt32)crc32.ComputeCrc32((int)_Keys[2], (byte)(_Keys[1] >> 24)); } ///// ///// The byte array representing the seed keys used. ///// Get this after calling InitCipher. The 12 bytes represents ///// what the zip spec calls the "EncryptionHeader". ///// //public byte[] KeyHeader //{ // get // { // byte[] result = new byte[12]; // result[0] = (byte)(_Keys[0] & 0xff); // result[1] = (byte)((_Keys[0] >> 8) & 0xff); // result[2] = (byte)((_Keys[0] >> 16) & 0xff); // result[3] = (byte)((_Keys[0] >> 24) & 0xff); // result[4] = (byte)(_Keys[1] & 0xff); // result[5] = (byte)((_Keys[1] >> 8) & 0xff); // result[6] = (byte)((_Keys[1] >> 16) & 0xff); // result[7] = (byte)((_Keys[1] >> 24) & 0xff); // result[8] = (byte)(_Keys[2] & 0xff); // result[9] = (byte)((_Keys[2] >> 8) & 0xff); // result[10] = (byte)((_Keys[2] >> 16) & 0xff); // result[11] = (byte)((_Keys[2] >> 24) & 0xff); // return result; // } //} // private fields for the crypto stuff: private UInt32[] _Keys = { 0x12345678, 0x23456789, 0x34567890 }; private Ionic.Crc.CRC32 crc32 = new Ionic.Crc.CRC32(); } internal enum CryptoMode { Encrypt, Decrypt } /// /// A Stream for reading and concurrently decrypting data from a zip file, /// or for writing and concurrently encrypting data to a zip file. /// internal class ZipCipherStream : System.IO.Stream { private ZipCrypto _cipher; private System.IO.Stream _s; private CryptoMode _mode; /// The constructor. /// The underlying stream /// To either encrypt or decrypt. /// The pre-initialized ZipCrypto object. public ZipCipherStream(System.IO.Stream s, ZipCrypto cipher, CryptoMode mode) : base() { _cipher = cipher; _s = s; _mode = mode; } public override int Read(byte[] buffer, int offset, int count) { if (_mode == CryptoMode.Encrypt) throw new NotSupportedException("This stream does not encrypt via Read()"); if (buffer == null) throw new ArgumentNullException("buffer"); byte[] db = new byte[count]; int n = _s.Read(db, 0, count); byte[] decrypted = _cipher.DecryptMessage(db, n); for (int i = 0; i < n; i++) { buffer[offset + i] = decrypted[i]; } return n; } public override void Write(byte[] buffer, int offset, int count) { if (_mode == CryptoMode.Decrypt) throw new NotSupportedException("This stream does not Decrypt via Write()"); if (buffer == null) throw new ArgumentNullException("buffer"); // workitem 7696 if (count == 0) return; byte[] plaintext = null; if (offset != 0) { plaintext = new byte[count]; for (int i = 0; i < count; i++) { plaintext[i] = buffer[offset + i]; } } else plaintext = buffer; byte[] encrypted = _cipher.EncryptMessage(plaintext, count); _s.Write(encrypted, 0, encrypted.Length); } public override bool CanRead { get { return (_mode == CryptoMode.Decrypt); } } public override bool CanSeek { get { return false; } } public override bool CanWrite { get { return (_mode == CryptoMode.Encrypt); } } public override void Flush() { //throw new NotSupportedException(); } public override long Length { get { throw new NotSupportedException(); } } public override long Position { get { throw new NotSupportedException(); } set { throw new NotSupportedException(); } } public override long Seek(long offset, System.IO.SeekOrigin origin) { throw new NotSupportedException(); } public override void SetLength(long value) { throw new NotSupportedException(); } } }