#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; namespace HeuristicLab.Problems.TestFunctions.MultiObjective { public static class Hypervolume { /// /// The Hyprevolume-metric is defined as the Hypervolume enclosed between a given reference point, /// that is fixed for every evaluation function and the evaluated front. /// /// Example: /// r is the reference Point at (1|1) and every Point p is part of the evaluated front /// The filled Area labled HV is the 2 dimensional Hypervolume enclosed by this front. /// /// (0|1) (1|1) /// + +-------------r /// | |###### HV ###| /// | p------+######| /// | p+#####| /// | |#####| /// | p-+###| /// | p---+ /// | /// +--------------------1 /// (0|0) (1|0) /// /// Please note that in this example both dimensions are minimized. The reference Point need to be dominated by EVERY point in the evaluated front /// /// /// public static double Calculate(IEnumerable front, double[] referencePoint, bool[] maximization) { front = NonDominatedSelect.GetDominatingVectors(front, referencePoint, maximization, false); if (!front.Any()) throw new ArgumentException("No point in the front dominates the referencePoint"); if (maximization.Length == 2) return Calculate2D(front, referencePoint, maximization); if (Array.TrueForAll(maximization, x => !x)) return CalculateMulitDimensional(front, referencePoint); else throw new NotImplementedException("Hypervolume calculation for more than two dimensions is supported only with minimization problems."); } private static double Calculate2D(IEnumerable front, double[] referencePoint, bool[] maximization) { if (front == null) throw new ArgumentNullException("Front must not be null."); if (!front.Any()) throw new ArgumentException("Front must not be empty."); if (referencePoint == null) throw new ArgumentNullException("ReferencePoint must not be null."); if (referencePoint.Length != 2) throw new ArgumentException("ReferencePoint must have exactly two dimensions."); double[][] set = front.ToArray(); if (set.Any(s => s.Length != 2)) throw new ArgumentException("Points in front must have exactly two dimensions."); Array.Sort(set, new Utilities.DimensionComparer(0, maximization[0])); double sum = 0; for (int i = 0; i < set.Length - 1; i++) { sum += Math.Abs((set[i][0] - set[i + 1][0])) * Math.Abs((set[i][1] - referencePoint[1])); } double[] lastPoint = set[set.Length - 1]; sum += Math.Abs(lastPoint[0] - referencePoint[0]) * Math.Abs(lastPoint[1] - referencePoint[1]); return sum; } private static double CalculateMulitDimensional(IEnumerable front, double[] referencePoint) { if (referencePoint == null || referencePoint.Length < 3) throw new ArgumentException("ReferencePoint unfit for complex Hypervolume calculation"); int objectives = referencePoint.Length; var fronList = front.ToList(); fronList.StableSort(new Utilities.DimensionComparer(objectives - 1, false)); double[] regLow = Enumerable.Repeat(1E15, objectives).ToArray(); foreach (double[] p in fronList) { for (int i = 0; i < regLow.Length; i++) { if (p[i] < regLow[i]) regLow[i] = p[i]; } } return Stream(regLow, referencePoint, fronList, 0, referencePoint[objectives - 1], (int)Math.Sqrt(fronList.Count), objectives); } private static double Stream(double[] regionLow, double[] regionUp, List front, int split, double cover, int sqrtNoPoints, int objectives) { double coverOld = cover; int coverIndex = 0; int coverIndexOld = -1; int c; double result = 0; double dMeasure = GetMeasure(regionLow, regionUp, objectives); while (cover == coverOld && coverIndex < front.Count()) { if (coverIndexOld == coverIndex) break; coverIndexOld = coverIndex; if (Covers(front[coverIndex], regionLow, objectives)) { cover = front[coverIndex][objectives - 1]; result += dMeasure * (coverOld - cover); } else coverIndex++; } for (c = coverIndex; c > 0; c--) if (front[c - 1][objectives - 1] == cover) coverIndex--; if (coverIndex == 0) return result; bool allPiles = true; int[] piles = new int[coverIndex]; for (int i = 0; i < coverIndex; i++) { piles[i] = IsPile(front[i], regionLow, regionUp, objectives); if (piles[i] == -1) { allPiles = false; break; } } if (allPiles) { double[] trellis = new double[regionUp.Length]; for (int j = 0; j < trellis.Length; j++) trellis[j] = regionUp[j]; double current = 0; double next = 0; int i = 0; do { current = front[i][objectives - 1]; do { if (front[i][piles[i]] < trellis[piles[i]]) trellis[piles[i]] = front[i][piles[i]]; i++; if (i < coverIndex) next = front[i][objectives - 1]; else { next = cover; break; } } while (next == current); result += ComputeTrellis(regionLow, regionUp, trellis, objectives) * (next - current); } while (next != cover); } else { double bound = -1; double[] boundaries = new double[coverIndex]; double[] noBoundaries = new double[coverIndex]; int boundIdx = 0; int noBoundIdx = 0; do { for (int i = 0; i < coverIndex; i++) { int contained = ContainesBoundary(front[i], regionLow, split); if (contained == 0) boundaries[boundIdx++] = front[i][split]; else if (contained == 1) noBoundaries[noBoundIdx++] = front[i][split]; } if (boundIdx > 0) bound = GetMedian(boundaries, boundIdx); else if (noBoundIdx > sqrtNoPoints) bound = GetMedian(noBoundaries, noBoundIdx); else split++; } while (bound == -1.0); List pointsChildLow, pointsChildUp; pointsChildLow = new List(); pointsChildUp = new List(); double[] regionUpC = new double[regionUp.Length]; for (int j = 0; j < regionUpC.Length; j++) regionUpC[j] = regionUp[j]; double[] regionLowC = new double[regionLow.Length]; for (int j = 0; j < regionLowC.Length; j++) regionLowC[j] = regionLow[j]; for (int i = 0; i < coverIndex; i++) { if (PartCovers(front[i], regionUpC, objectives)) pointsChildUp.Add(front[i]); if (PartCovers(front[i], regionUp, objectives)) pointsChildLow.Add(front[i]); } //this could/should be done in Parallel if (pointsChildUp.Count > 0) result += Stream(regionLow, regionUpC, pointsChildUp, split, cover, sqrtNoPoints, objectives); if (pointsChildLow.Count > 0) result += Stream(regionLowC, regionUp, pointsChildLow, split, cover, sqrtNoPoints, objectives); } return result; } private static double GetMedian(double[] vector, int length) { return vector.Take(length).Median(); } private static double ComputeTrellis(double[] regionLow, double[] regionUp, double[] trellis, int objectives) { bool[] bs = new bool[objectives - 1]; for (int i = 0; i < bs.Length; i++) bs[i] = true; double result = 0; uint noSummands = BinarayToInt(bs); int oneCounter; double summand; for (uint i = 1; i <= noSummands; i++) { summand = 1; IntToBinary(i, bs); oneCounter = 0; for (int j = 0; j < objectives - 1; j++) { if (bs[j]) { summand *= regionUp[j] - trellis[j]; oneCounter++; } else { summand *= regionUp[j] - regionLow[j]; } } if (oneCounter % 2 == 0) result -= summand; else result += summand; } return result; } private static void IntToBinary(uint i, bool[] bs) { for (int j = 0; j < bs.Length; j++) bs[j] = false; uint rest = i; int idx = 0; while (rest != 0) { bs[idx] = rest % 2 == 1; rest = rest / 2; idx++; } } private static uint BinarayToInt(bool[] bs) { uint result = 0; for (int i = 0; i < bs.Length; i++) { result += bs[i] ? ((uint)1 << i) : 0; } return result; } private static int IsPile(double[] cuboid, double[] regionLow, double[] regionUp, int objectives) { int pile = cuboid.Length; for (int i = 0; i < objectives - 1; i++) { if (cuboid[i] > regionLow[i]) { if (pile != objectives) return 1; pile = i; } } return pile; } private static double GetMeasure(double[] regionLow, double[] regionUp, int objectives) { double volume = 1; for (int i = 0; i < objectives - 1; i++) { volume *= (regionUp[i] - regionLow[i]); } return volume; } private static int ContainesBoundary(double[] cub, double[] regionLow, int split) { if (regionLow[split] >= cub[split]) return -1; else { for (int j = 0; j < split; j++) { if (regionLow[j] < cub[j]) return 1; } } return 0; } private static bool PartCovers(double[] v, double[] regionUp, int objectives) { for (int i = 0; i < objectives - 1; i++) { if (v[i] >= regionUp[i]) return false; } return true; } private static bool Covers(double[] v, double[] regionLow, int objectives) { for (int i = 0; i < objectives - 1; i++) { if (v[i] > regionLow[i]) return false; } return true; } } }