#region License Information /* HeuristicLab * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HEAL.Attic; namespace HeuristicLab.Problems.DataAnalysis { /// <summary> /// Represents a regression data analysis solution /// </summary> [StorableType("00A95897-4AA4-406B-B304-5D19AA30C4B1")] public class RegressionSolution : RegressionSolutionBase { protected readonly Dictionary<int, double> evaluationCache; [StorableConstructor] protected RegressionSolution(StorableConstructorFlag _) : base(_) { evaluationCache = new Dictionary<int, double>(); } protected RegressionSolution(RegressionSolution original, Cloner cloner) : base(original, cloner) { evaluationCache = new Dictionary<int, double>(original.evaluationCache); } public RegressionSolution(IRegressionModel model, IRegressionProblemData problemData) : base(model, problemData) { evaluationCache = new Dictionary<int, double>(problemData.Dataset.Rows); CalculateRegressionResults(); } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionSolution(this, cloner); } public override IEnumerable<double> EstimatedValues { get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public override IEnumerable<double> EstimatedTrainingValues { get { return GetEstimatedValues(ProblemData.TrainingIndices); } } public override IEnumerable<double> EstimatedTestValues { get { return GetEstimatedValues(ProblemData.TestIndices); } } public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) { var rowsToEvaluate = rows.Where(row => !evaluationCache.ContainsKey(row)); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = Model.GetEstimatedValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => evaluationCache[row]); } protected override void OnProblemDataChanged() { evaluationCache.Clear(); base.OnProblemDataChanged(); } protected override void OnModelChanged() { evaluationCache.Clear(); base.OnModelChanged(); } } }