#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Selection;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[StorableType("3E8EA052-3B86-4609-BD38-E3FE78DAD2FF")]
[Item("DiversitySelector", "A selection operator that applies a diversity penalty to the objective function before applying an inner selector.")]
public sealed class DiversitySelector : StochasticSingleObjectiveSelector, ISingleObjectiveSelector {
private const string StrictSimilarityParameterName = "StrictSimilarity";
private const string SimilarityWeightParameterName = "SimilarityWeight";
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string SelectorParameterName = "Selector";
private const string DiversityParameterName = "Diversity";
public IValueParameter SelectorParameter {
get { return (IValueParameter)Parameters[SelectorParameterName]; }
}
public ISingleObjectiveSelector Selector {
get { return SelectorParameter.Value; }
set { SelectorParameter.Value = value; }
}
public IScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (IScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public IScopeTreeLookupParameter DiversityParameter {
get { return (IScopeTreeLookupParameter)Parameters[DiversityParameterName]; }
}
public IFixedValueParameter StrictSimilarityParameter {
get { return (IFixedValueParameter)Parameters[StrictSimilarityParameterName]; }
}
public IFixedValueParameter SimilarityWeightParameter {
get { return (IFixedValueParameter)Parameters[SimilarityWeightParameterName]; }
}
public bool StrictSimilarity {
get { return StrictSimilarityParameter.Value.Value; }
set { StrictSimilarityParameter.Value.Value = value; }
}
public double SimilarityWeight {
get { return SimilarityWeightParameter.Value.Value; }
set { SimilarityWeightParameter.Value.Value = value; }
}
public DiversitySelector() : base() {
Parameters.Add(new FixedValueParameter(StrictSimilarityParameterName, "Calculate strict similarity.", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(SimilarityWeightParameterName, "Weight of the diversity term.", new DoubleValue(1)));
Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees that should be analyzed."));
Parameters.Add(new ValueParameter(SelectorParameterName, "The inner selection operator to select the parents.", new TournamentSelector()));
Parameters.Add(new ScopeTreeLookupParameter(DiversityParameterName, "The diversity value calcuated by the operator (output). The inner selector uses this value."));
RegisterParameterEventHandlers();
}
[StorableConstructor]
private DiversitySelector(StorableConstructorFlag _) : base(_) { }
private DiversitySelector(DiversitySelector original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new DiversitySelector(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(DiversityParameterName)) {
Parameters.Add(new ScopeTreeLookupParameter(DiversityParameterName));
}
RegisterParameterEventHandlers();
}
#region Events
private void RegisterParameterEventHandlers() {
SelectorParameter.ValueChanged += SelectorParameter_ValueChanged;
CopySelectedParameter.ValueChanged += CopySelectedParameter_ValueChanged;
CopySelected.ValueChanged += CopySelected_ValueChanged;
MaximizationParameter.NameChanged += MaximizationParameter_NameChanged;
QualityParameter.NameChanged += QualityParameter_NameChanged;
RandomParameter.NameChanged += RandomParameter_NameChanged;
}
private void RandomParameter_NameChanged(object sender, EventArgs e) { ParameterizeSelector(Selector); }
private void QualityParameter_NameChanged(object sender, EventArgs e) { ParameterizeSelector(Selector); }
private void MaximizationParameter_NameChanged(object sender, EventArgs e) { ParameterizeSelector(Selector); }
private void CopySelectedParameter_ValueChanged(object sender, EventArgs e) {
if (CopySelected.Value != true) {
CopySelected.Value = true;
}
CopySelected.ValueChanged += CopySelected_ValueChanged;
}
private void SelectorParameter_ValueChanged(object sender, EventArgs e) {
ParameterizeSelector(Selector);
}
private void CopySelected_ValueChanged(object sender, EventArgs e) {
if (CopySelected.Value != true) {
CopySelected.Value = true;
}
}
#endregion
protected override IScope[] Select(List scopes) {
var w = SimilarityWeight;
if (w.IsAlmost(0)) {
ApplyInnerSelector();
return CurrentScope.SubScopes[1].SubScopes.ToArray(); // return selected individuals (selectors create two sub-scopes with remaining and selected)
}
var trees = SymbolicExpressionTreeParameter.ActualValue;
var qualities = QualityParameter.ActualValue;
// calculate average similarity for each tree
var similarityMatrix = SymbolicExpressionTreeHash.ComputeSimilarityMatrix(trees, simplify: false, strict: StrictSimilarity);
var similarities = new double[trees.Length];
for (int i = 0; i < trees.Length; ++i) {
for (int j = 0; j < trees.Length; ++j) {
if (i != j) {
similarities[i] += similarityMatrix[i, j];
}
}
similarities[i] /= (trees.Length - 1);
}
var v = 1 - w;
var maximization = MaximizationParameter.ActualValue.Value;
var diversities = new ItemArray(trees.Length);
for (int i = 0; i < trees.Length; ++i) {
var q = qualities[i].Value;
var d = 1 - similarities[i]; // average distance
// assuming both q and d are in the interval [0, 1]
var value = maximization
? (v * q) + (w * d)
: (v * q) - (w * d);
diversities[i] = new DoubleValue(value);
}
Selector.QualityParameter.ActualName = "Diversity";
DiversityParameter.ActualValue = diversities;
ApplyInnerSelector(); // apply inner selector
return CurrentScope.SubScopes[1].SubScopes.ToArray();
}
private void ParameterizeSelector(ISingleObjectiveSelector selector) {
selector.CopySelected = new BoolValue(true); // must always be true
selector.MaximizationParameter.ActualName = MaximizationParameter.Name;
selector.QualityParameter.ActualName = QualityParameter.Name;
IStochasticOperator stoOp = (selector as IStochasticOperator);
if (stoOp != null) stoOp.RandomParameter.ActualName = RandomParameter.Name;
}
private void ApplyInnerSelector() {
// necessary for inner GenderSpecificSelector to execute all operations in OperationCollection
Stack executionStack = new Stack();
executionStack.Push(ExecutionContext.CreateChildOperation(Selector));
while (executionStack.Count > 0) {
CancellationToken.ThrowIfCancellationRequested();
IOperation next = executionStack.Pop();
if (next is OperationCollection) {
OperationCollection coll = (OperationCollection)next;
for (int i = coll.Count - 1; i >= 0; i--)
if (coll[i] != null) executionStack.Push(coll[i]);
} else if (next is IAtomicOperation) {
IAtomicOperation operation = (IAtomicOperation)next;
next = operation.Operator.Execute((IExecutionContext)operation, CancellationToken);
if (next != null) executionStack.Push(next);
}
}
}
}
}