#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
///
/// Base class for a test function evaluator.
///
[Item("Multi-Objective Function", "Base class for multi objective functions.")]
[StorableClass]
public abstract class MultiObjectiveTestFunction : ParameterizedNamedItem, IMultiObjectiveTestFunction {
///
/// These operators should not change their name through the GUI
///
public override bool CanChangeName {
get { return false; }
}
///
/// Gets the minimum problem size.
///
[Storable]
public int MinimumSolutionLength { get; private set; }
///
/// Gets the maximum problem size.
///
[Storable]
public int MaximumSolutionLength { get; private set; }
///
/// Gets the minimum solution size.
///
[Storable]
public int MinimumObjectives { get; private set; }
///
/// Gets the maximum solution size.
///
[Storable]
public int MaximumObjectives { get; private set; }
///
/// Returns whether the actual function constitutes a maximization or minimization problem.
///
public bool[] Maximization(int objectives) {
CheckObjectives(objectives);
return GetMaximization(objectives);
}
protected abstract bool[] GetMaximization(int objectives);
///
/// Gets the lower and upper bound of the function.
///
public double[,] Bounds(int objectives) {
CheckObjectives(objectives);
return GetBounds(objectives);
}
protected abstract double[,] GetBounds(int objectives);
///
/// retrieves the optimal pareto front (if known from a file)
///
public IEnumerable OptimalParetoFront(int objectives) {
CheckObjectives(objectives);
return GetOptimalParetoFront(objectives);
}
protected abstract IEnumerable GetOptimalParetoFront(int objectives);
///
/// returns a Reference Point for Hypervolume calculation (default=(11|11))
///
public double[] ReferencePoint(int objectives) {
CheckObjectives(objectives);
return GetReferencePoint(objectives);
}
protected abstract double[] GetReferencePoint(int objectives);
///
/// returns the best known Hypervolume for this test function (default=-1)
///
public virtual double OptimalHypervolume(int objectives) {
CheckObjectives(objectives);
return GetBestKnownHypervolume(objectives);
}
protected virtual double GetBestKnownHypervolume(int objectives) {
return -1;
}
protected void CheckObjectives(int objectives) {
if (objectives < MinimumObjectives) throw new ArgumentException(string.Format("There must be at least {0} objectives", MinimumObjectives));
if (objectives > MaximumObjectives) throw new ArgumentException(string.Format("There must be at most {0} objectives", MaximumObjectives));
}
[StorableConstructor]
protected MultiObjectiveTestFunction(bool deserializing) : base(deserializing) { }
protected MultiObjectiveTestFunction(MultiObjectiveTestFunction original, Cloner cloner)
: base(original, cloner) {
MinimumObjectives = original.MinimumObjectives;
MaximumObjectives = original.MaximumObjectives;
MinimumSolutionLength = original.MinimumSolutionLength;
MaximumSolutionLength = original.MaximumSolutionLength;
}
protected MultiObjectiveTestFunction(int minimumObjectives, int maximumObjectives, int minimumSolutionLength, int maximumSolutionLength)
: base() {
Parameters.Add(new FixedValueParameter("Minimum Objectives",
"The dimensionality of the problem instance (number of variables in the function).",
(IntValue)new IntValue(minimumObjectives).AsReadOnly()) { GetsCollected = false });
Parameters.Add(new FixedValueParameter("Maximum Objectives", "The dimensionality of the problem instance (number of variables in the function).", (IntValue)new IntValue(maximumObjectives).AsReadOnly()) { GetsCollected = false });
Parameters.Add(new FixedValueParameter("Minimum SolutionLength", "The dimensionality of the problem instance (number of variables in the function).", (IntValue)new IntValue(minimumSolutionLength).AsReadOnly()) { GetsCollected = false });
Parameters.Add(new FixedValueParameter("Maximum SolutionLength", "The dimensionality of the problem instance (number of variables in the function).", (IntValue)new IntValue(maximumSolutionLength).AsReadOnly()) { GetsCollected = false });
MinimumObjectives = minimumObjectives;
MaximumObjectives = maximumObjectives;
MinimumSolutionLength = minimumSolutionLength;
MaximumSolutionLength = maximumSolutionLength;
}
///
/// Evaluates the test function for a specific .
///
/// N-dimensional point for which the test function should be evaluated.
/// The result values of the function at the given point.
public abstract double[] Evaluate(RealVector point, int objectives);
}
}