#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class SalutowiczFunctionOneDimensional : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Vladislavleva-2 F2(X) = exp(-X) * X³ * cos(X) * sin(X) * (cos(X)sin(X)² - 1)"; } }
public override string Description {
get {
return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
+ "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
+ "Function: F2(X) = exp(-X) * X³ * cos(X) * sin(X) * (cos(X)sin(X)² - 1)" + Environment.NewLine
+ "Training Data: 100 points X = (0.05:0.1:10)" + Environment.NewLine
+ "Test Data: 221 points X = (-0.5:0.05:10.5)" + Environment.NewLine
+ "Function Set: +, -, *, /, square, e^x, e^-x, sin(x), cos(x), x^eps, x + eps, x + eps";
}
}
protected override string TargetVariable { get { return "Y"; } }
protected override string[] VariableNames { get { return new string[] { "X", "Y" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 100; } }
protected override int TestPartitionStart { get { return 100; } }
protected override int TestPartitionEnd { get { return 321; } }
protected override List> GenerateValues() {
List> data = new List>();
data.Add(SequenceGenerator.GenerateSteps(0.05m, 10, 0.1m).Select(v => (double)v).ToList());
data[0].AddRange(SequenceGenerator.GenerateSteps(-0.5m, 10.5m, 0.05m).Select(v => (double)v));
double x;
List results = new List();
for (int i = 0; i < data[0].Count; i++) {
x = data[0][i];
results.Add(Math.Exp(-x) * Math.Pow(x, 3) * Math.Cos(x) * Math.Sin(x) * (Math.Cos(x) * Math.Pow(Math.Sin(x), 2) - 1));
}
data.Add(results);
return data;
}
}
}