#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using HeuristicLab.Data;
using HeuristicLab.MainForm;
using HeuristicLab.PluginInfrastructure;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Timeframe Feature Correlation View")]
[Content(typeof(DataAnalysisProblemData), false)]
public partial class TimeframeFeatureCorrelationView : AbstractFeatureCorrelationView {
private FeatureCorrelationTimeframeCache correlationTimeframCache;
private string lastFramesValue;
private new TimeframeFeatureCorrelationCalculator CorrelationCalculator {
get { return (TimeframeFeatureCorrelationCalculator)base.CorrelationCalculator; }
set { base.CorrelationCalculator = value; }
}
public TimeframeFeatureCorrelationView() {
InitializeComponent();
CorrelationCalculator = new TimeframeFeatureCorrelationCalculator();
correlationTimeframCache = new FeatureCorrelationTimeframeCache();
errorProvider.SetIconAlignment(timeframeTextbox, ErrorIconAlignment.MiddleRight);
errorProvider.SetIconPadding(timeframeTextbox, 2);
lastFramesValue = timeframeTextbox.Text;
}
protected override void OnContentChanged() {
correlationTimeframCache.Reset();
if (Content != null) {
dataView.RowVisibility = SetInitialVariableVisibility();
SetVariableSelectionComboBox();
}
base.OnContentChanged();
}
protected virtual void SetVariableSelectionComboBox() {
variableSelectionComboBox.DataSource = Content.Dataset.DoubleVariables.ToList();
}
private void VariableSelectionComboBox_SelectedChangeCommitted(object sender, EventArgs e) {
CalculateCorrelation();
}
private void TimeframeTextbox_KeyDown(object sender, System.Windows.Forms.KeyEventArgs e) {
if (e.KeyCode == Keys.Enter || e.KeyCode == Keys.Return) {
timeFrameLabel.Select(); // select label to validate data
}
if (e.KeyCode == Keys.Escape) {
timeframeTextbox.Text = lastFramesValue;
timeFrameLabel.Select(); // select label to validate data
}
}
private void TimeframeTextbox_Validated(object sender, System.EventArgs e) {
lastFramesValue = timeframeTextbox.Text;
errorProvider.SetError(timeframeTextbox, string.Empty);
CalculateCorrelation();
}
private void TimeframeTextbox_Validating(object sender, System.ComponentModel.CancelEventArgs e) {
int help;
if (!int.TryParse(timeframeTextbox.Text, out help)) {
errorProvider.SetError(timeframeTextbox, "Timeframe couldn't be parsed. Enter a valid integer value.");
e.Cancel = true;
} else {
if (help > 50) {
DialogResult dr = MessageBox.Show("The entered value is bigger than 50. Are you sure you want to calculate? " +
"The calculation could take some time.", "Huge Value Warning", MessageBoxButtons.YesNo);
e.Cancel = !dr.Equals(DialogResult.Yes);
} else if (help < 0) {
errorProvider.SetError(timeframeTextbox, "The entered value can't be negative!");
e.Cancel = true;
}
}
}
protected override void CalculateCorrelation() {
if (correlationCalcComboBox.SelectedItem == null) return;
if (partitionComboBox.SelectedItem == null) return;
if (variableSelectionComboBox.SelectedItem == null) return;
string variable = (string)variableSelectionComboBox.SelectedItem;
IDependencyCalculator calc = (IDependencyCalculator)correlationCalcComboBox.SelectedValue;
string partition = (string)partitionComboBox.SelectedValue;
int frames;
int.TryParse(timeframeTextbox.Text, out frames);
dataView.Enabled = false;
double[,] corr = correlationTimeframCache.GetTimeframeCorrelation(calc, partition, variable);
if (corr == null) {
CorrelationCalculator.CalculateTimeframeElements(Content, calc, partition, variable, frames);
} else if (corr.GetLength(1) <= frames) {
CorrelationCalculator.CalculateTimeframeElements(Content, calc, partition, variable, frames, corr);
} else {
CorrelationCalculator.TryCancelCalculation();
var columnNames = Enumerable.Range(0, corr.GetLength(1)).Select(x => x.ToString());
var correlation = new DoubleMatrix(corr, columnNames, Content.Dataset.DoubleVariables);
((IStringConvertibleMatrix)correlation).Columns = frames + 1;
UpdateDataView(correlation);
}
}
protected override void FeatureCorrelation_CalculationFinished(object sender, AbstractFeatureCorrelationCalculator.CorrelationCalculationFinishedArgs e) {
if (InvokeRequired) {
Invoke(new AbstractFeatureCorrelationCalculator.CorrelationCalculationFinishedHandler(FeatureCorrelation_CalculationFinished), sender, e);
} else {
correlationTimeframCache.SetTimeframeCorrelation(e.Calculcator, e.Partition, e.Variable, e.Correlation);
var columnNames = Enumerable.Range(0, e.Correlation.GetLength(1)).Select(x => x.ToString());
var correlation = new DoubleMatrix(e.Correlation, columnNames, Content.Dataset.DoubleVariables);
UpdateDataView(correlation);
}
}
[NonDiscoverableType]
private class FeatureCorrelationTimeframeCache : Object {
private Dictionary, double[,]> timeFrameCorrelationsCache;
public FeatureCorrelationTimeframeCache()
: base() {
InitializeCaches();
}
private void InitializeCaches() {
timeFrameCorrelationsCache = new Dictionary, double[,]>();
}
public void Reset() {
InitializeCaches();
}
public double[,] GetTimeframeCorrelation(IDependencyCalculator calc, string partition, string variable) {
double[,] corr;
var key = new Tuple(calc, partition, variable);
timeFrameCorrelationsCache.TryGetValue(key, out corr);
return corr;
}
public void SetTimeframeCorrelation(IDependencyCalculator calc, string partition, string variable, double[,] correlation) {
var key = new Tuple(calc, partition, variable);
timeFrameCorrelationsCache[key] = correlation;
}
}
}
}