#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
///
/// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
/// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
/// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
/// until a valid configuration is found.
///
[Item("SubtreeSwappingCrossover", "An operator which performs subtree swapping crossover.")]
[StorableClass]
public class SubtreeCrossover : SymbolicExpressionTreeCrossover, ISymbolicExpressionTreeSizeConstraintOperator {
private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
#region Parameter Properties
public IValueLookupParameter InternalCrossoverPointProbabilityParameter {
get { return (IValueLookupParameter)Parameters[InternalCrossoverPointProbabilityParameterName]; }
}
public IValueLookupParameter MaximumSymbolicExpressionTreeLengthParameter {
get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
}
public IValueLookupParameter MaximumSymbolicExpressionTreeDepthParameter {
get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
}
#endregion
#region Properties
public PercentValue InternalCrossoverPointProbability {
get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
}
public IntValue MaximumSymbolicExpressionTreeLength {
get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
}
public IntValue MaximumSymbolicExpressionTreeDepth {
get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
}
#endregion
[StorableConstructor]
protected SubtreeCrossover(bool deserializing) : base(deserializing) { }
protected SubtreeCrossover(SubtreeCrossover original, Cloner cloner) : base(original, cloner) { }
public SubtreeCrossover()
: base() {
Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree."));
Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0)."));
Parameters.Add(new ValueLookupParameter(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SubtreeCrossover(this, cloner);
}
public override ISymbolicExpressionTree Crossover(IRandom random,
ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
return Cross(random, parent0, parent1, InternalCrossoverPointProbability.Value,
MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value);
}
public static ISymbolicExpressionTree Cross(IRandom random,
ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
double internalCrossoverPointProbability, int maxTreeLength, int maxTreeDepth) {
// select a random crossover point in the first parent
CutPoint crossoverPoint0;
SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeLength, maxTreeDepth, out crossoverPoint0);
int childLength = crossoverPoint0.Child != null ? crossoverPoint0.Child.GetLength() : 0;
// calculate the max length and depth that the inserted branch can have
int maxInsertedBranchLength = Math.Max(0, maxTreeLength - (parent0.Length - childLength));
int maxInsertedBranchDepth = Math.Max(0, maxTreeDepth - parent0.Root.GetBranchLevel(crossoverPoint0.Parent));
List allowedBranches = new List();
parent1.Root.ForEachNodePostfix((n) => {
if (n.GetLength() <= maxInsertedBranchLength &&
n.GetDepth() <= maxInsertedBranchDepth && crossoverPoint0.IsMatchingPointType(n))
allowedBranches.Add(n);
});
// empty branch
if (crossoverPoint0.IsMatchingPointType(null)) allowedBranches.Add(null);
if (allowedBranches.Count == 0) {
return parent0;
} else {
var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
if (selectedBranch != null)
selectedBranch = (ISymbolicExpressionTreeNode)selectedBranch.Clone();
if (crossoverPoint0.Child != null) {
// manipulate the tree of parent0 in place
// replace the branch in tree0 with the selected branch from tree1
crossoverPoint0.Parent.RemoveSubtree(crossoverPoint0.ChildIndex);
if (selectedBranch != null) {
crossoverPoint0.Parent.InsertSubtree(crossoverPoint0.ChildIndex, selectedBranch);
}
} else {
// child is null (additional child should be added under the parent)
if (selectedBranch != null) {
crossoverPoint0.Parent.AddSubtree(selectedBranch);
}
}
return parent0;
}
}
private static void SelectCrossoverPoint(IRandom random, ISymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchLength, int maxBranchDepth, out CutPoint crossoverPoint) {
if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
List internalCrossoverPoints = new List();
List leafCrossoverPoints = new List();
parent0.Root.ForEachNodePostfix((n) => {
if (n.SubtreeCount > 0 && n != parent0.Root) {
//avoid linq to reduce memory pressure
for (int i = 0; i < n.SubtreeCount; i++) {
var child = n.GetSubtree(i);
if (child.GetLength() <= maxBranchLength &&
child.GetDepth() <= maxBranchDepth) {
if (child.SubtreeCount > 0)
internalCrossoverPoints.Add(new CutPoint(n, child));
else
leafCrossoverPoints.Add(new CutPoint(n, child));
}
}
// add one additional extension point if the number of sub trees for the symbol is not full
if (n.SubtreeCount < n.Grammar.GetMaximumSubtreeCount(n.Symbol)) {
// empty extension point
internalCrossoverPoints.Add(new CutPoint(n, n.SubtreeCount));
}
}
}
);
if (random.NextDouble() < internalNodeProbability) {
// select from internal node if possible
if (internalCrossoverPoints.Count > 0) {
// select internal crossover point or leaf
crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
} else {
// otherwise select external node
crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
}
} else if (leafCrossoverPoints.Count > 0) {
// select from leaf crossover point if possible
crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
} else {
// otherwise select internal crossover point
crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
}
}
private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable branches, double internalNodeProbability) {
if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
List allowedInternalBranches;
List allowedLeafBranches;
if (random.NextDouble() < internalNodeProbability) {
// select internal node if possible
allowedInternalBranches = (from branch in branches
where branch != null && branch.SubtreeCount > 0
select branch).ToList();
if (allowedInternalBranches.Count > 0) {
return allowedInternalBranches.SampleRandom(random);
} else {
// no internal nodes allowed => select leaf nodes
allowedLeafBranches = (from branch in branches
where branch == null || branch.SubtreeCount == 0
select branch).ToList();
return allowedLeafBranches.SampleRandom(random);
}
} else {
// select leaf node if possible
allowedLeafBranches = (from branch in branches
where branch == null || branch.SubtreeCount == 0
select branch).ToList();
if (allowedLeafBranches.Count > 0) {
return allowedLeafBranches.SampleRandom(random);
} else {
allowedInternalBranches = (from branch in branches
where branch != null && branch.SubtreeCount > 0
select branch).ToList();
return allowedInternalBranches.SampleRandom(random);
}
}
}
}
}