#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.PermutationEncoding {
[Item("StochasticScrambleMultiMoveGenerator", "Randomly samples n from all possible scramble moves from a given permutation.")]
[StorableClass]
public class StochasticScrambleMultiMoveGenerator : ScrambleMoveGenerator, IMultiMoveGenerator, IStochasticOperator {
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
public IValueLookupParameter SampleSizeParameter {
get { return (IValueLookupParameter)Parameters["SampleSize"]; }
}
public IntValue SampleSize {
get { return SampleSizeParameter.Value; }
set { SampleSizeParameter.Value = value; }
}
[StorableConstructor]
protected StochasticScrambleMultiMoveGenerator(bool deserializing) : base(deserializing) { }
protected StochasticScrambleMultiMoveGenerator(StochasticScrambleMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
public StochasticScrambleMultiMoveGenerator()
: base() {
Parameters.Add(new LookupParameter("Random", "The random number generator."));
Parameters.Add(new ValueLookupParameter("SampleSize", "The number of moves to generate."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new StochasticScrambleMultiMoveGenerator(this, cloner);
}
public static ScrambleMove GenerateRandomMove(Permutation permutation, IRandom random) {
int breakPoint1, breakPoint2;
int[] scrambledIndices;
breakPoint1 = random.Next(permutation.Length);
do {
breakPoint2 = random.Next(permutation.Length);
} while (Math.Abs(breakPoint2 - breakPoint1) <= 1);
if (breakPoint2 < breakPoint1) { int h = breakPoint1; breakPoint1 = breakPoint2; breakPoint2 = h; }
scrambledIndices = new int[breakPoint2 - breakPoint1 + 1];
for (int i = 0; i < scrambledIndices.Length; i++)
scrambledIndices[i] = i;
bool[] moved = new bool[scrambledIndices.Length];
bool changed = false;
do {
for (int i = scrambledIndices.Length - 1; i > 0; i--) {
int j = random.Next(i + 1);
int t = scrambledIndices[j];
scrambledIndices[j] = scrambledIndices[i];
scrambledIndices[i] = t;
if (scrambledIndices[j] == j) moved[j] = false;
else moved[j] = true;
if (scrambledIndices[i] == i) moved[i] = false;
else moved[i] = true;
}
changed = moved.Any(x => x);
} while (!changed);
return new ScrambleMove(breakPoint1, scrambledIndices);
}
public static ScrambleMove[] Apply(Permutation permutation, IRandom random, int sampleSize) {
int length = permutation.Length;
ScrambleMove[] moves = new ScrambleMove[sampleSize];
for (int i = 0; i < sampleSize; i++) {
moves[i] = GenerateRandomMove(permutation, random);
}
return moves;
}
protected override ScrambleMove[] GenerateMoves(Permutation permutation) {
IRandom random = RandomParameter.ActualValue;
return Apply(permutation, random, SampleSizeParameter.ActualValue.Value);
}
}
}