#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.PermutationEncoding { [Item("StochasticScrambleMultiMoveGenerator", "Randomly samples n from all possible scramble moves from a given permutation.")] [StorableClass] public class StochasticScrambleMultiMoveGenerator : ScrambleMoveGenerator, IMultiMoveGenerator, IStochasticOperator { public ILookupParameter RandomParameter { get { return (ILookupParameter)Parameters["Random"]; } } public IValueLookupParameter SampleSizeParameter { get { return (IValueLookupParameter)Parameters["SampleSize"]; } } public IntValue SampleSize { get { return SampleSizeParameter.Value; } set { SampleSizeParameter.Value = value; } } [StorableConstructor] protected StochasticScrambleMultiMoveGenerator(bool deserializing) : base(deserializing) { } protected StochasticScrambleMultiMoveGenerator(StochasticScrambleMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { } public StochasticScrambleMultiMoveGenerator() : base() { Parameters.Add(new LookupParameter("Random", "The random number generator.")); Parameters.Add(new ValueLookupParameter("SampleSize", "The number of moves to generate.")); } public override IDeepCloneable Clone(Cloner cloner) { return new StochasticScrambleMultiMoveGenerator(this, cloner); } public static ScrambleMove GenerateRandomMove(Permutation permutation, IRandom random) { int breakPoint1, breakPoint2; int[] scrambledIndices; breakPoint1 = random.Next(permutation.Length); do { breakPoint2 = random.Next(permutation.Length); } while (Math.Abs(breakPoint2 - breakPoint1) <= 1); if (breakPoint2 < breakPoint1) { int h = breakPoint1; breakPoint1 = breakPoint2; breakPoint2 = h; } scrambledIndices = new int[breakPoint2 - breakPoint1 + 1]; for (int i = 0; i < scrambledIndices.Length; i++) scrambledIndices[i] = i; bool[] moved = new bool[scrambledIndices.Length]; bool changed = false; do { for (int i = scrambledIndices.Length - 1; i > 0; i--) { int j = random.Next(i + 1); int t = scrambledIndices[j]; scrambledIndices[j] = scrambledIndices[i]; scrambledIndices[i] = t; if (scrambledIndices[j] == j) moved[j] = false; else moved[j] = true; if (scrambledIndices[i] == i) moved[i] = false; else moved[i] = true; } changed = moved.Any(x => x); } while (!changed); return new ScrambleMove(breakPoint1, scrambledIndices); } public static ScrambleMove[] Apply(Permutation permutation, IRandom random, int sampleSize) { int length = permutation.Length; ScrambleMove[] moves = new ScrambleMove[sampleSize]; for (int i = 0; i < sampleSize; i++) { moves[i] = GenerateRandomMove(permutation, random); } return moves; } protected override ScrambleMove[] GenerateMoves(Permutation permutation) { IRandom random = RandomParameter.ActualValue; return Apply(permutation, random, SampleSizeParameter.ActualValue.Value); } } }