#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Encodings.LinearLinkageEncoding {
[Item("Greedy Partition Crossover", "The Greedy Partition Crossover (GPX) is implemented as described in Ülker, Ö., Özcan, E., Korkmaz, E. E. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In Practice and Theory of Automated Timetabling VI, pp. 347-363. Springer Berlin Heidelberg.")]
[StorableClass]
public sealed class GreedyPartitionCrossover : LinearLinkageCrossover {
[StorableConstructor]
private GreedyPartitionCrossover(bool deserializing) : base(deserializing) { }
private GreedyPartitionCrossover(GreedyPartitionCrossover original, Cloner cloner) : base(original, cloner) { }
public GreedyPartitionCrossover() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new GreedyPartitionCrossover(this, cloner);
}
public static LinearLinkage Apply(IRandom random, ItemArray parents) {
var len = parents[0].Length;
var childGroup = new List>();
var currentParent = random.Next(parents.Length);
var groups = parents.Select(x => x.GetGroups().Select(y => new HashSet(y)).ToList()).ToList();
bool remaining;
do {
var maxGroup = groups[currentParent].Select((v, i) => Tuple.Create(i, v))
.MaxItems(x => x.Item2.Count)
.SampleRandom(random).Item1;
var group = groups[currentParent][maxGroup];
groups[currentParent].RemoveAt(maxGroup);
childGroup.Add(group);
remaining = false;
for (var p = 0; p < groups.Count; p++) {
for (var j = 0; j < groups[p].Count; j++) {
foreach (var elem in group) groups[p][j].Remove(elem);
if (!remaining && groups[p][j].Count > 0) remaining = true;
}
}
currentParent = (currentParent + 1) % parents.Length;
} while (remaining);
return LinearLinkage.FromGroups(len, childGroup);
}
protected override LinearLinkage Cross(IRandom random, ItemArray parents) {
return Apply(random, parents);
}
}
}