#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Encodings.LinearLinkageEncoding { [Item("Greedy Partition Crossover", "The Greedy Partition Crossover (GPX) is implemented as described in Ülker, Ö., Özcan, E., Korkmaz, E. E. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In Practice and Theory of Automated Timetabling VI, pp. 347-363. Springer Berlin Heidelberg.")] [StorableClass] public sealed class GreedyPartitionCrossover : LinearLinkageCrossover { [StorableConstructor] private GreedyPartitionCrossover(bool deserializing) : base(deserializing) { } private GreedyPartitionCrossover(GreedyPartitionCrossover original, Cloner cloner) : base(original, cloner) { } public GreedyPartitionCrossover() { } public override IDeepCloneable Clone(Cloner cloner) { return new GreedyPartitionCrossover(this, cloner); } public static LinearLinkage Apply(IRandom random, ItemArray parents) { var len = parents[0].Length; var childGroup = new List>(); var currentParent = random.Next(parents.Length); var groups = parents.Select(x => x.GetGroups().Select(y => new HashSet(y)).ToList()).ToList(); bool remaining; do { var maxGroup = groups[currentParent].Select((v, i) => Tuple.Create(i, v)) .MaxItems(x => x.Item2.Count) .SampleRandom(random).Item1; var group = groups[currentParent][maxGroup]; groups[currentParent].RemoveAt(maxGroup); childGroup.Add(group); remaining = false; for (var p = 0; p < groups.Count; p++) { for (var j = 0; j < groups[p].Count; j++) { foreach (var elem in group) groups[p][j].Remove(elem); if (!remaining && groups[p][j].Count > 0) remaining = true; } } currentParent = (currentParent + 1) % parents.Length; } while (remaining); return LinearLinkage.FromGroups(len, childGroup); } protected override LinearLinkage Cross(IRandom random, ItemArray parents) { return Apply(random, parents); } } }