#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[StorableClass]
[Item("SymbolicDataAnalysisSolutionImpactValuesCalculator", "Calculates the impact values and replacements values for symbolic expression tree nodes.")]
public abstract class SymbolicDataAnalysisSolutionImpactValuesCalculator : Item, ISymbolicDataAnalysisSolutionImpactValuesCalculator {
protected SymbolicDataAnalysisSolutionImpactValuesCalculator() { }
protected SymbolicDataAnalysisSolutionImpactValuesCalculator(SymbolicDataAnalysisSolutionImpactValuesCalculator original, Cloner cloner)
: base(original, cloner) { }
[StorableConstructor]
protected SymbolicDataAnalysisSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
public virtual void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows,
out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation,
double qualityForImpactsCalculation = double.NaN) {
var cloner = new Cloner();
var tempModel = cloner.Clone(model);
if (double.IsNaN(qualityForImpactsCalculation)) {
qualityForImpactsCalculation = CalculateQualityForImpacts(tempModel, problemData, rows);
}
var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node);
var tempModelParentNode = tempModelNode.Parent;
int i = tempModelParentNode.IndexOfSubtree(tempModelNode);
double bestReplacementValue = 0.0;
double bestImpactValue = double.PositiveInfinity;
newQualityForImpactsCalculation = qualityForImpactsCalculation; // initialize
// try the potentially reasonable replacement values and use the best one
foreach (var repValue in CalculateReplacementValues(node, model.SymbolicExpressionTree, model.Interpreter, problemData.Dataset, rows)) {
tempModelParentNode.RemoveSubtree(i);
var constantNode = new ConstantTreeNode(new Constant()) { Value = repValue };
tempModelParentNode.InsertSubtree(i, constantNode);
newQualityForImpactsCalculation = CalculateQualityForImpacts(tempModel, problemData, rows);
impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation;
if (impactValue < bestImpactValue) {
bestImpactValue = impactValue;
bestReplacementValue = repValue;
}
}
replacementValue = bestReplacementValue;
impactValue = bestImpactValue;
}
protected abstract double CalculateQualityForImpacts(ISymbolicDataAnalysisModel model, IDataAnalysisProblemData problemData, IEnumerable rows);
protected IEnumerable CalculateReplacementValues(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
IDataset dataset, IEnumerable rows) {
//optimization: constant nodes return always the same value
ConstantTreeNode constantNode = node as ConstantTreeNode;
BinaryFactorVariableTreeNode binaryFactorNode = node as BinaryFactorVariableTreeNode;
FactorVariableTreeNode factorNode = node as FactorVariableTreeNode;
if (constantNode != null) {
yield return constantNode.Value;
} else if (binaryFactorNode != null) {
// valid replacements are either all off or all on
yield return 0;
yield return 1;
} else if (factorNode != null) {
foreach (var w in factorNode.Weights) yield return w;
yield return 0.0;
} else {
var rootSymbol = new ProgramRootSymbol().CreateTreeNode();
var startSymbol = new StartSymbol().CreateTreeNode();
rootSymbol.AddSubtree(startSymbol);
startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
var tempTree = new SymbolicExpressionTree(rootSymbol);
// clone ADFs of source tree
for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
}
yield return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median();
yield return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Average(); // TODO perf
}
}
}
}