#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HEAL.Attic;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// An operator that collects the Pareto-best symbolic data analysis solutions for single objective symbolic data analysis problems.
///
[Item("SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer", "An operator that analyzes the Pareto-best symbolic data analysis solution for single objective symbolic data analysis problems.")]
[StorableType("0C0557F2-DCBC-4699-9BA9-3E82C858605E")]
public abstract class SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveAnalyzer, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator
where T : class, ISymbolicDataAnalysisSolution
where S : class, IDataAnalysisProblemData {
private const string ProblemDataParameterName = "ProblemData";
private const string TrainingBestSolutionsParameterName = "Best training solutions";
private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities";
private const string ComplexityParameterName = "Complexity";
private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
private const string EstimationLimitsParameterName = "EstimationLimits";
public override bool EnabledByDefault {
get { return false; }
}
#region parameter properties
public ILookupParameter> TrainingBestSolutionsParameter {
get { return (ILookupParameter>)Parameters[TrainingBestSolutionsParameterName]; }
}
public ILookupParameter> TrainingBestSolutionQualitiesParameter {
get { return (ILookupParameter>)Parameters[TrainingBestSolutionQualitiesParameterName]; }
}
public IScopeTreeLookupParameter ComplexityParameter {
get { return (IScopeTreeLookupParameter)Parameters[ComplexityParameterName]; }
}
public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter {
get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
}
public ILookupParameter ProblemDataParameter {
get { return (ILookupParameter)Parameters[ProblemDataParameterName]; }
}
public IValueLookupParameter EstimationLimitsParameter {
get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; }
}
#endregion
#region properties
public ItemList TrainingBestSolutions {
get { return TrainingBestSolutionsParameter.ActualValue; }
set { TrainingBestSolutionsParameter.ActualValue = value; }
}
public ItemList TrainingBestSolutionQualities {
get { return TrainingBestSolutionQualitiesParameter.ActualValue; }
set { TrainingBestSolutionQualitiesParameter.ActualValue = value; }
}
#endregion
[StorableConstructor]
protected SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
protected SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer(SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer()
: base() {
Parameters.Add(new LookupParameter(ProblemDataParameterName, "The problem data for the symbolic data analysis solution."));
Parameters.Add(new LookupParameter>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analysis solutions."));
Parameters.Add(new LookupParameter>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions."));
Parameters.Add(new ScopeTreeLookupParameter(ComplexityParameterName, "The complexity of each tree."));
Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
}
public override IOperation Apply() {
var results = ResultCollection;
// create empty parameter and result values
if (TrainingBestSolutions == null) {
TrainingBestSolutions = new ItemList();
TrainingBestSolutionQualities = new ItemList();
results.Add(new Result(TrainingBestSolutionQualitiesParameter.Name, TrainingBestSolutionQualitiesParameter.Description, TrainingBestSolutionQualities));
results.Add(new Result(TrainingBestSolutionsParameter.Name, TrainingBestSolutionsParameter.Description, TrainingBestSolutions));
}
IList> trainingBestQualities = TrainingBestSolutionQualities
.Select(x => Tuple.Create(x[0], x[1]))
.ToList();
#region find best trees
IList nonDominatedIndexes = new List();
ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
List qualities = Quality.Select(x => x.Value).ToList();
List complexities;
if (ComplexityParameter.ActualValue != null && ComplexityParameter.ActualValue.Length == qualities.Count) {
complexities = ComplexityParameter.ActualValue.Select(x => x.Value).ToList();
} else {
complexities = tree.Select(t => (double)t.Length).ToList();
}
List> fitness = new List>();
for (int i = 0; i < qualities.Count; i++)
fitness.Add(Tuple.Create(qualities[i], complexities[i]));
var maximization = Tuple.Create(Maximization.Value, false);// complexity must be minimized
List> newNonDominatedQualities = new List>();
for (int i = 0; i < tree.Length; i++) {
if (IsNonDominated(fitness[i], trainingBestQualities, maximization) &&
IsNonDominated(fitness[i], newNonDominatedQualities, maximization) &&
IsNonDominated(fitness[i], fitness.Skip(i + 1), maximization)) {
if (!newNonDominatedQualities.Contains(fitness[i])) {
newNonDominatedQualities.Add(fitness[i]);
nonDominatedIndexes.Add(i);
}
}
}
#endregion
#region update Pareto-optimal solution archive
if (nonDominatedIndexes.Count > 0) {
ItemList nonDominatedQualities = new ItemList();
ItemList nonDominatedSolutions = new ItemList();
// add all new non-dominated solutions to the archive
foreach (var index in nonDominatedIndexes) {
T solution = CreateSolution(tree[index]);
nonDominatedSolutions.Add(solution);
nonDominatedQualities.Add(new DoubleArray(new double[] { fitness[index].Item1, fitness[index].Item2 }));
}
// add old non-dominated solutions only if they are not dominated by one of the new solutions
for (int i = 0; i < trainingBestQualities.Count; i++) {
if (IsNonDominated(trainingBestQualities[i], newNonDominatedQualities, maximization)) {
if (!newNonDominatedQualities.Contains(trainingBestQualities[i])) {
nonDominatedSolutions.Add(TrainingBestSolutions[i]);
nonDominatedQualities.Add(TrainingBestSolutionQualities[i]);
}
}
}
// make sure solutions and qualities are ordered in the results
var orderedIndexes =
nonDominatedSolutions.Select((s, i) => i).OrderBy(i => nonDominatedQualities[i][0]).ToArray();
var orderedNonDominatedSolutions = new ItemList();
var orderedNonDominatedQualities = new ItemList();
foreach (var i in orderedIndexes) {
orderedNonDominatedQualities.Add(nonDominatedQualities[i]);
orderedNonDominatedSolutions.Add(nonDominatedSolutions[i]);
}
TrainingBestSolutions = orderedNonDominatedSolutions;
TrainingBestSolutionQualities = orderedNonDominatedQualities;
results[TrainingBestSolutionsParameter.Name].Value = orderedNonDominatedSolutions;
results[TrainingBestSolutionQualitiesParameter.Name].Value = orderedNonDominatedQualities;
}
#endregion
return base.Apply();
}
protected abstract T CreateSolution(ISymbolicExpressionTree bestTree);
private bool IsNonDominated(Tuple point, IEnumerable> points, Tuple maximization) {
return !points.Any(p => IsBetterOrEqual(p.Item1, point.Item1, maximization.Item1) &&
IsBetterOrEqual(p.Item2, point.Item2, maximization.Item2));
}
private bool IsBetterOrEqual(double lhs, double rhs, bool maximization) {
if (maximization) return lhs >= rhs;
else return lhs <= rhs;
}
}
}