#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Parameters;
using HEAL.Attic;
namespace HeuristicLab.Analysis.FitnessLandscape {
[Item("QAPPermutationFitnessDistanceCorrelationAnalyzer", "An operator that analyzes the correlation between fitness and distance to the best know solution for permutation encoding")]
[StorableType("31823F7B-55FB-4D57-80EE-89F4D90B6412")]
public class QAPPermutationFitnessDistanceCorrelationAnalyzer : FitnessDistanceCorrelationAnalyzer, IPermutationOperator {
#region Parameters
public ScopeTreeLookupParameter PermutationParameter {
get { return (ScopeTreeLookupParameter)Parameters["Permutation"]; }
}
public LookupParameter BestKnownSolution {
get { return (LookupParameter)Parameters["BestKnownSolution"]; }
}
public ILookupParameter WeightsParameter {
get { return (ILookupParameter)Parameters["Weights"]; }
}
public ILookupParameter DistancesParameter {
get { return (ILookupParameter)Parameters["Distances"]; }
}
#endregion
[StorableConstructor]
protected QAPPermutationFitnessDistanceCorrelationAnalyzer(StorableConstructorFlag _) : base(_) { }
protected QAPPermutationFitnessDistanceCorrelationAnalyzer(QAPPermutationFitnessDistanceCorrelationAnalyzer original, Cloner cloner) : base(original, cloner) { }
public QAPPermutationFitnessDistanceCorrelationAnalyzer() {
Parameters.Add(new ScopeTreeLookupParameter("Permutation", "The permutation encoded solution"));
Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution"));
Parameters.Add(new LookupParameter("Weights", "The weights matrix."));
Parameters.Add(new LookupParameter("Distances", "The distances matrix."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new QAPPermutationFitnessDistanceCorrelationAnalyzer(this, cloner);
}
public static double Distance(Permutation a, Permutation b, DoubleMatrix weights, DoubleMatrix distances) {
Dictionary alleles = new Dictionary(a.Length * a.Length);
int distance = 0;
for (int x = 0; x < a.Length; x++) {
for (int y = 0; y < a.Length; y++) {
string alleleA = weights[x, y].ToString() + ">" + distances[a[x], a[y]].ToString();
string alleleB = weights[x, y].ToString() + ">" + distances[b[x], b[y]].ToString();
if (alleleA == alleleB) continue;
int countA = 1, countB = -1;
if (alleles.ContainsKey(alleleA)) countA += alleles[alleleA];
if (alleles.ContainsKey(alleleB)) countB += alleles[alleleB];
if (countA <= 0) distance--; // we've found in A an allele that was present in B
else distance++; // we've found in A a new allele
alleles[alleleA] = countA;
if (countB >= 0) distance--; // we've found in B an allele that was present in A
else distance++; // we've found in B a new allele
alleles[alleleB] = countB;
}
}
return distance;
}
protected override IEnumerable GetDistancesToBestKnownSolution() {
if (PermutationParameter.ActualName == null)
return new double[0];
Permutation bestKnownValue = BestKnownSolution.ActualValue;
if (bestKnownValue == null)
return PermutationParameter.ActualValue.Select(v => 0d);
return PermutationParameter.ActualValue.Select(v => Distance(v, bestKnownValue, WeightsParameter.ActualValue, DistancesParameter.ActualValue));
}
}
}